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Abstract

Although the finite element method (FEM) is well established tool
of numerical modelling in the material research and in the enginee-
ring applications of the fluid dynamics, applications in the magneto-
hydrodynamics (MHD) and, especially, in the astrophysical plasmas
are recently only slowly developing. Nevertheless, contrary to com-
monly used finite difference methods, the FEM has many advantages
— above all, more precise implementation of boundary conditions and
unstructured mesh.

The main goal of this work is to implement parallel (MPI) MHD
code based on the FEM and its application to the problem of the
interaction of the scales in the magnetic field reconnection in a solar
flare. The theoretically expected cascade in the turbulent reconnection
will be studied using the developed code. The final result should be
to understand energy transfer from global scale of eruption into the
dissipative micro-scale and, conversely, relations between changes in
the connectivity of dissipative-scale magnetic field and global change
in the topology of magnetic field in an active region.



Abstrakt

Zatimco v materidlovém vyzkumu a inzenyrské hydrodynamice jsou
metody koneénjch prvka (FEM) dobfe etablovanym nastrojem nu-
merického modelovéani, v magnetohydrodynamice (MHD) a pfedev§im
jejich astrofyzikalnich aplikacich se zacinaji teprve zvolna rozvijet.
Pritom oproti uzivanym metodam konec¢nych diferenci maji mnoho
prednosti — predevsim presnéjsi implementaci hrani¢nich podminek a
nestrukturovanou sit.

Cilem préace je vytvoteni paralelniho (MPI) MHD kédu zalozeného
na metodé konec¢nych prvkt a jeho pouziti predevsim na feSeni pro-
blému interakce skal v procesu rekonexe magnetického pole ve slunec¢ni
erupci. S pomoci vytvoreného kédu bude studovana teoreticky pred-
pokladana kaskada v turbulentni rekonexi. Koneénym vystupem by
meélo byt porozumeéni prenosu energie od globalni skaly erupce smé-
rem k disipativni mikroskale a naopak souvislost zmén konektivity
magnetického pole na trovni disipativni skaly s globalnimi zménami
magnetické topologie v aktivni oblasti.



Introduction

Dynamics of magnetized plasma at sufficiently large spatial and tem-
poral scales can be adequately described by the set of magnetohydro-
dynamic (MHD) equations (Priest, 1984). In many problems we face
the situation with high Lundquist (a.k.a. magnetic Reynolds) number

S = Reyy = LuoVa/n

where L is the characteristic size of the system, V) = B/,/p the ty-
pical Alfvén velocity (B and p being the magnetic field strength and
plasma density, respectively) and 7 the electric resistivity. A direct
consequence of the high Lundquist number is a large separation be-
tween the system size and the dissipation scale. The cascading frag-
mentation of the current layer in the magnetic reconnection in solar
flares (Shibata and Tanuma, 2001; Barta et al., 2011b,a) can serve as
an example of such a multi-scale problem: The span between the erup-
tion size (~ 10° km) and the dissipation scale (1 m — 10 m) in the
practically collision-less coronal plasmas easily extends seven orders
of magnitude.

In general, there are two approaches how to handle such a broad
range of scales. The first one uses a moderate numerical resolution
and models the physics on the sub-grid (unresolved) scales using some
plausible assumptions on the micro-scale statistical properties (corre-
lations) of the quantities that define the system (e.g. flow or magnetic
field). Among them, e.g., the large-eddy simulations (LES) (Métais,
2001) or Reynolds-averaged numerical simulations (RANS) (Leschziner,
2001) belong to the well known methods used widely in engineering
applications in the fluid dynamics.

The second approach is based on direct simulations that cover all
the scales contained in the problem. Traditionally, the adaptive mesh
refinement (AMR) technique is used with the finite-difference/finite
volume methods in order to resolve high-gradient regions locally, kee-
ping the total number of grid points required for simulation at a ma-
nageable level (see, e.g., Berger and Oliger, 1984; Fryxell et al., 2000;
van der Holst and Keppens, 2007).

Nevertheless, also this approach has its limitations caused by in-
troduction of artificial boundaries between fine and coarse meshes.
This problem, however, can be cured by the methods based on un-



structured mesh, such as is used in FEM. With this in mind we have
implemented a FEM-based solver for MHD equations and present it
in the current paper. From various FEM formulations we have chosen
the least-squares FEM (LSFEM) because it is robust, universal (it
can solve all kinds of partial differential equations) and it is efficient —
it always leads to the system of linearized equations with symmetric,
positive definite matrix (Jiang, 1998). The LSFEM keeps many key
properties of the Rayleigh-Ritz formulation even for systems of equati-
ons for which the equivalent optimization problem (in Rayleigh-Ritz
sense) does not exist (Bochev and Gunzburger, 2009).

Despite of the FEM applications in the fluid dynamics made a sub-
stantial development in the past years, its usage for numerical solu-
tion of MHD equations is still rather rare. For example, the NIMROD
(Sovinec et al., 2004) and M3D codes (Jardin and Breslau, 2005) —
based on Galerkin formulation — belong to a few known implemen-
tations of FEM-based MHD solvers. Related work also has been done
by Lukin (2008) who implemented the MHD (and two-fluid) equati-
ons within the more general code framework SEL (Glasser and Tang,
2004) based on the Galerkin formulation with high-order Jacobi poly-
nomials as the basis functions.



Method

In general, LSFEM is formulated for the linear problem

Au=f in

(1)
Bu =g onI" = 0f)

where A is the linear (differential) operator, B the boundary operator,
() is the domain and I is the boundary of €2, f is a source vector and
g is a boundary condition.

In the least-square formulation of the FEM the problem described
by Egs. (1) is transformed to seek the minimum of the functional

/ AT ®,AD,dQ + b1 / B"®;B%;dT =

Qe FE
/ AT®, £dQ + bt / BT®;gdl’, (2)
Q(i Fe

where h~! is appropriate mesh-dependent weighting factor

(Bochev and Gunzburger, 2009), function w = > ®,u; is approxima-
ted by a set of unknown parameters w; and basis (trial) functions
®;(x) where x is an independent variable..

Generally, the operators from formal LSFEM problem (1) are in
the nonlinear form. We need transform operators into the linear and
time discretized form for computational purposes. The linearization of
operator can be achieved straightforwardly by lagging the nonlinear
term. This simple iteration method (also called successive substitution
method) has slow convergence. To improve rate of convergence, we can
apply the Newton-Raphson linearization method due to its quadratic
convergence (see Dennis and Schmabel (1996)). The Newton-Raphson
(N-R) method is a powerful and widely used technique for solving
nonlinear equations numerically. Let consider a system of partial dif-
ferential equations in the conservative form

ov OF;

— 4 —
where F'; is a flux in the direction of coordinate x; and W is a state
vector (note that the MHD equations can be re-written into this form

0, (3)



as well). Then the operator A from equation (2) for the conservative
hyperbolic equation (3) reads
0A}

0
= —t 5
A=1+0At < 7. + A, 8@) (4)

where parameter © € (0,1) controls the implicitness of the scheme,
Al = %{;j . 1s the Jacobian matrix, index k& denotes N-R lineari-
zation iteration step, and corresponding right hand side (RHS) has

the following form

7 ;
OF; _ %\Il’“> : (5)

F=0,—(1- 0)At <8xi o

where terms with over-line are from the old time step. The complete
linearized operator and RHS for one fluid resistive MHD equitations
are shown in expanded form in the Appendix of the thesis.

LSFEM implementation of MHD

At the first we divide the global domain into elements. We use tri-
angle elements in whole domain. The method of mesh creation has
been described by Chung (2002). The second step is mapping a shape
functions on the created mesh — creating a function space.

Next part of initialization is initial condition. The state vector of
each node has set values according to its global spatial coordinates.

When we have initial mesh and function space we can continue
into the main loop of the code. The top loop is counting a time. It
controls the time step size At and contains nested linearization loop,
Gaussian integration, assembling sparse stiffness matrix and load vec-
tor, and solving a system of linear equations. The time step is set
according to the Courant-Friedrichs-Lewy condition. The nested loop
is over linearization. It finds solution of the sparse stiffness matrix and
checks difference between a solution of the last linearization. If it is

k_ . k+1

under the required accuracy % < ¢ the program continues to
the next time step. The linearization loop usually finishes in 2-3 steps
when the accuracy 107 is reached. The stiffness matrix assembling
and solving is nested in the linearization loop. The stiffness matrix is
assembled element by element. In the inner element loop we integrate
terms in Eq. (2). The Gaussian quadrature (Chung, 2002) is used for



an integration where the transformation into natural triangle coordi-
natesis applied (Rathod et al., 2004). For faster evaluation of integrals
we calculate and store operators applied on each interpolation (basis)
function for given Gaussian point A®;. We add the multiplied ope-
rators ATCI)Z-WACIDJ- into the stiffness matrix in positions according
to the global node indexes and also we add multiplied operator with
right hand side A7 ®;W f into the load vector. The weighting diago-
nal matrix W sets the weights to the corresponding MHD equations
and supplemental solenoidal condition V - B = 0. After summming
the sub-matrices and the sub-vectors for all Gaussian points we conti-
nue to the next element until the entire stiffness matriz and the load
vector are assembled. The system of equations given by the stiffness
matrix and the load vector is solved by the Jacobi preconditioned
Conjugate Gradient Method (JCGM) (Press et al., 2007). The JCGM
usually takes few tens of iteration to reach required precision (10719),
where the speed of convergence (almost) do not depend on the size of
the matrix. If the solenoidal condition is involved in the MHD equati-
ons (i.e. the corresponding weight from W is non-zero and we solve
overdetermined system) then the condition number of stiffness matrix
significantly increases (i.e. from ~ 10° to ~ 10) and the JCGM takes
10—50 times more iterations. After obtaining solution from JCGM the
program continues to the next linearization loop. The entire algorithm
can be summarized as follows:

— time loop — adapt time step size according to CFL condition,
check final desired time

. L. o b . . .
~ linearization loop — if ®=%"1 ~ ¢ or maximum iteration
[uh 1]

count is reached continue to next time step
— assembling stiffness matrix K element by element
— integration by Gaussian quadrature
1. compute the operator matrices for each basis function

2. multiply the operator matrices then add the result
into stiffness matrix

3. multiply the operator matrix by the RHS then add
result into the load vector

— next Gaussian point
— next element
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Figure 1 — The value of V- B and the condition number of stiffness matrix for various
weights W for the solenoidal condition at the time ¢ = 0.1. The simulation was
performed using a homogeneous mesh consisting of 2 x 128 x 128 triangle elements.

— find new solution u**! of stiffness system by the JCGM

— next linearization

— next time step

Magnetic divergence suppression

Figure 1 shows dependency of divergence B and condition number of
stiffness matrix on the weight of the solenoidal condition in the MHD
equations. The graph shows an inverse relationship between weight
and absolute value of divergence of magnetic field (integrated over
whole domain). As we expect according to the minimization of residual
error of the divergence B equation, the increasing weight reduces the
magnetic charge in the domain. On the other hand, the raising weight
significantly increases the condition number of the stiffness matrix and
makes it difficult to solve.

The condition number is constant for the weight smaller than 107,
It is caused by a small contribution of divergence equation to the stiff-
ness matrix. Unfortunately, the condition number steeply grows with
the increasing weight, when the weight is greater than 10~*. In these
cases, the contribution to the operator matrix of V - B is significant



and it can even override other terms in the operator which leads to
the increase of the condition number of the matrix.

Results

This section contains results obtained from the code both from the
various testing/veryfication runs and the actual intended application
to the problem of magnetic reconnection.

Ryu-Jones discontinuity test problem

Before application to the topical research problems the code has been
tested on several benchmarks. As the first test we have run the stan-

dard Ryu-Jones ideal MHD 1D shock/discontinuity problem (Ryu and Jones,
1995). The initial state is given by prescriptions (p, vs, vy, Vs, By, By, B., E) =
(1,-1,0,0,0,1,5,1) in the left half, and (p, vy, vy, v, By, By, B:, E) =
(1,1,0,0,0,1,5,0) in the right half of the computational box, respecti-

vely. The domain (—0.5,0.5) was divided into 512 elements. We used

the first order basis functions to approximate the FEM solution. The
boundary conditions on both ends are of von Neumann type. Results

at time ¢t = 0.1 are shown in Fig. 2. They correspond and could be
compared with Fig. 3b in Ryu and Jones (1995).
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Figure 2 — The LSFEM solution of the MHD shock tube test (Ryu-Jones problem)
at time ¢ = 0.1 with the first-order basis functions. (a) density profile (red dashed
line) and B, profile along z-axis. (b) v, profile along z-axis.

In order to study influence of basis-function order on the appro-
ximate solution we calculate the same test problem, now with the
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Figure 3 — The LSFEM solution of the MHD shock tube test (Ryu-Jones problem)
at time ¢t = 0.1 with the second-order basis functions. Displayed quantities are the

same as in Fig. 2.

second-order Lagrange polynomials. All other parameters are the same
as in the previous case displayed in Fig. 2. The results of second-order
basis functions are shown in Fig. 3. Both simulations closely match to
the expected profiles, only artificial peaks are developed in the middle
of domain in density p and magnetic field B,

Orszag-Tang vortex test problem

As a next test, we performed the standard Orszag-Tang 2D ideal-MHD
vortex problem (see Orszag and Tang, 1979).

Figure 4 — The Orzsag-Tang vortex. The color coded plasma density is displayed at
time ¢t = 0.25 (a) and ¢ = 0.50 (b).



Figure 5 — The Orzsag-Tang vortex. The color coded magnitude of the magnetic
field is displayed at times ¢t = 0.25 (a) and ¢t = 0.50 (b).

The computational domain 1.0 x 1.0 was discretized by 2 x 640 x 640
triangular elements. We apply periodic boundary conditions at all
boundaries. The first-order basis functions were used in this simu-
lation. Results in Figs. 4 and 5 show the plasma density and the mag-
nitude of the magnetic field, respectively, at times ¢ = 0.25 (a), and
t = 0.50 (b). The simulation reproduces classical Orszag-Tang structu-
res only with small oscillations surrounding shock-fronts.

Resistive decay of a cylindric current

In order to assess the applicability of our code to the solutions of non-
ideal (resistive) MHD problems and to estimate its numerical resisti-
vity we performed a simulation of the resistive decay of a cylindrical
current column in two spatial dimensions for which in certain limits
analytical solutions exist (see Skédla and Barta, 2012).
Computational domain is divided into a homogeneous mesh of 2 x
512 x 512 triangles in our numerical test. We use the first order basis
functions to approximate the numerical solution. Free boundary condi-
tions were applied on all boundaries. The results of this test are shown
in Fig. 6. Fig. 6(a) shows time evolution of the current density profile
along y = 0 for five subsequent time instants. Resistive decrease of j,
inside the column accompanied by formation of the induced surface
current are well visible. Fig. 6(b) shows a comparison of numerical and
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Figure 6 — A resistive decay of a cylindrical current density with time. (a) profiles
of j.(z,0,t) at five subsequent times. (b) The time profile of j.(0,0,¢) - comparison
of numerical and analytical solutions.

analytical solutions for time evolution of the current density j.(x,y, t)
at r = 0,y = 0. The plot reveals very good agreement between LSFEM
and analytical solutions. Moreover, the induced current on the border
of resistive disk does not spread further into the domain and stays
only on the three boundary nodes between ideal and resistive plasma.

Magnetic field reconnection

Finally, after the benchmarking, we apply LSFEM implementation
of the MHD solver for a numerical simulation of a real science case:
The magnetic reconnection in a flare-like current sheet. The reference
frame was chosen to have the y-axis in the vertical direction, the z-axis
is in the invariant direction along the current density vector and the
xr-axis is perpendicular to the current sheet. The free von Neumann
boundary conditions % = 0 are applied at the bottom, right and left
sides except the normal component of magnetic field B,,. The compo-
nent B, is given by equation V - B = 0. The mixed von Neumann
and Dirichlet boundary conditions are applied on the bottom side.
The Dirichlet boundary condition is applied to momentum density
7 = 0 and tangential component of magnetic field B; = 0 the other
quantities are given by free von Neumann boundary conditions. The
Dirichlet conditions ensures that the principal magnetic field compo-
nent is vertical at the bottom boundary and the total flux passing
through the boundary does not change, as enforce by the presence of
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a dense solar photosphere (see Barta et al. (2008)). The simulation
box is set to < —24,24 > x < —80,80 >. The domain is divided into
homogeneous mesh with 2 x 640 x 2200 = 2.816 - 10° elements. The
first order shape functions are mapped on the element. The plasma
beta parameter used in simulations is 5 = 0.15 and the ratio of specific
heats is v = 5/3. The initial condition is set according to Harris-type
current sheet (see Kliem et al. (2000))

The dynamical evolution of considered system is shown in figure
7. Evolution was triggered by small resistivity perturbation at mid-
dle of domain and then it causes a small burst of reconnection at
the origin, which leads to acceleration of a plasma along the current
sheet (y axis) by Lorentz force, see Fig. 7 - time ¢ = 10. According
to mass conservation the inflow is enforced into the region of initial
perturbation. This convects a new magnetic flux toward the current
sheet, which leads to increase of the current density again. Since the
current sheet is stretched and compressed enough, the anomalous re-
sistivity threshold v, is exceeded and the resistivity is switched on
at the origin around time ¢ ~ 60. This forms a secondary Petschek-
like reconnection, which breaks and re-joints more magnetic field li-
nes. A newly reconnected field lines are pulled by the Lorentz force
and form the outflows of heated plasma, which reach the Alfvén velo-
city after t ~ 80. The current sheet is continuously stretched by fast
outflows. The long and thin current sheet formed the Sweet-Parker
reconnection configuration and the anomalous resistivity is triggered
in several locations simultaneously. Later, a new X-points are formed
— the so-called secondary tearing. Around time ¢ ~ 100, the plasmoids
are formed and plasmoids are directed to boundaries with the out-
flows. The plasmoids are further accelerated then the fast shocks are
formed in front of magnetic islands around time ¢ = 160.
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Figure 7 — The momentum density with the magnetic field lines at several times of
evolution.
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Conclusions

The FEM represents an alternative to FDM/FVM that are traditio-
nally used for solution of MHD problems in astrophysics. Its attracti-
vity implies from its unstructured mesh that allows for appropriate
local refinement without formation of qualitative internal boundaries
between the fine and coarse meshes.

We have developed the parallel MPI LSFEM implementation of a
MHD solver with the adaptive mesh refinement.

We performed several standardized tests focused on an ideal and
resistive MHD. The LSFEM MHD solver quite closely reproduces re-
sults published for the Ryu-Jones shock tube problem (Ryu and Jones,
1995). Small spurious oscillations appear around the points where the
first derivative of an analytical solution does not exist. Choice of the
higher-order basis functions makes the situation even slightly worse.

Similar feature can be seen in the results from the Orszag-Tang
vortex test problem (Orszag and Tang, 1979). While the large-scale
dynamics agree well with those obtained from the 'gauge’ codes, small
oscillations accompanying the shocks are visible again. These effects
are caused by the least squares residual minimization in fixed norm,
which cannot handle discontinuity and monotone solution on the same
mesh (Bochev and Gunzburger, 2009).

Finally, we tested the properties of our implementation for solu-
tion of the resistive problems. In order to get a comparison with an
analytical solution we have 'frozen’ the plasma dynamics by setting
high mass density and we concentrated on a purely diffusive problem.
The results show a rather good agreement with the analytical solu-
tion. Namely, the induced surface current density is located only at
three nodes and did not diffuse further with time. This is an impor-
tant result for studies of the current-sheet filamentation in the flare
reconnection.

The simulation of the Harris-like current sheet with the mesh re-
finement reproduces expected formation of the current sheet tearing
with formation of plasmoids. Moreover this simulations reveals that
there is no negative influence of the locally refined mesh on the nu-
meric solution as partially reflected waves on the interface between
coarse and finer mesh. As the numeric tests show, LSFEM has very
small numeric diffusivity which leads to the bursty magnetic field re-
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connection. The anomalous resistivity is localized to the very small
region (corresponding to the concentrated current density according
to the used resistivity model) which leads to the fast Petschek-like re-
connection. The acceleration of the outflow and reconnected field lines
by Lorenz force is not disturbed by numeric viscosity and the stret-
ching of the current sheet is very fast. The long and stretched current
sheet is prone to secondary tearing and then plasmoid formation.

The tests show basic applicability of our LSFEM implementation
of the MHD solver for a solution of selected problems. At the same
moment they reveal the necessity to involve both the adaptive spatial
refinement and adaptive change of the order of basis functions over
selected elements (h-p refinement). These features will be implemented
into our code in a near future.
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Shrnuti

FEM reprezentuje alternativu k FDM/FVM, které jsou tradi¢né po-
uzivany na feseni MHD problémt v astrofyzice. Atraktivita metody
vyplyva z jeji nestrukturované sité, ktera umoznuje lokalni zjemnéni
bez kvalitativniho prechodu na vnitini hranici mezi jemnou a hrubou
siti.

Vytvorili jsme MPI paralelni kéd fesici MHD rovnice zalozeny na
LSFEM s adaptivnim zjemnovanim sité.

Kéd jsme testovali na nékolika standardnich tlohach zamérenych
na idealni i rezistivni MHD. LSFEM koéd vérné zreprodukoval vysledky
publikované Ryu and Jones (1995). Malé numerické oscilace se zfor-
movaly v bodé, kde neexistuje konecna derivace. Pouziti bazovych
funkci vyssich radt nepatrné zvysilo amplitudu oscilace.

Podobnou vlastnost mtizeme pozorovat i ve vysledcich z testu ’Orszag-
Tang vortex problem’ (Orszag and Tang, 1979). Velkoskalova dyna-
mika koreluje s vysledky obdrzenymi ’kalibra¢nimi’ kédy, ale v bliz-
kosti Sokovych vln miizeme pozorovat malé oscilace. Tyto efekty jsou
zpusobeny minimalizaci rezidua metodou nejmensich ¢tverct, u které
se stejnou normou nelze nalézt skokové a monotdénni feSeni na stejné
siti.

Vlastnosti nasi implementace metody byly testovany i na rezistiv-
nim problému. Abychom mohli porovnat numerické feseni s analytic-
kym, tak jsme potlacili dynamiku plasmatu nastavenim vysoké hus-
toty hmotnosti a tim jsme zredukovali MHD na ¢isté difuzni problém.
Porovnani vysledkt ukazuje shodu s analytickym fesenim. Indukovany
plosny proud je popsan tiemi uzly a v pribéhu simulace nedifunduje.
Toto je dilezity vysledek pro studium filamentace proudové vrstvy v
rekonexi eruptivni oblasti.

Simulace Harrisovy proudové vrstvy se zjemnénou siti zreproduko-
vala o¢ekdvany rozpad proudové vrstvy a formovani plazmoidi (mag-
netickych ostrovii). Navic tato simulace odhalila, Ze zjemnéna sit neméa
negativni vliv (napiiklad ¢astecny odraz vln na rozhrani mezi jemnou
a hrubou siti) na numerické feseni. Numericky test ukazal, ze LSFEM
ma velmi malou numerickou rezistivitu, coz vede k impulsivni magne-
tické rekonexi. Anomalni rezistivita je aplikovana jen ve velmi malych
oblastech (dle koncentrace hustoty elektrického proudu pouzitém v
modelu anomadlni rezistivity), coz vede k rychlé rekonexi podle Pet-
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schekova modelu rekonexe. Akcelerace vytoku plazmatu a prepoje-
nych magnetickych silo¢ar neni zpomalovana numerickou viskozitou,
a to zplisobuje velmi rychlé natahovani a stlacovani proudové vrstvy.
Dlouhé a stlacena proudova vrstva je nachylna na dalsi rozpad prou-
dové vrstvy a naslednou tvorbu plazmoidi.

Testy ukazaly zakladni pouzitelnost LSFEM implementace MHD
na reSeni vybranych problémt. Zaroven odhalily nutnost zahrnuti pro-
storového zjemnovani sité a adaptivni zménu fadu bazovych funkci na
vybranych elementech (h-p zjemnovani sité). Tyto vlastnosti budou
implementovany do naseho kédu v blizké budoucnosti.
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