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Goals of the thesis

The problems addressed in the thesis are a part of a long-term research
conducted in E. Hala Laboratory of Thermodynamics in the Institute of
Chemical Process Fundamentals of the Academy of Sciences of the Czech
Republic.

A general goal is to examine the effect of various definitions of a cluster
and a percolating cluster on the percolation threshold and then to examine
validity of the concept of universality. Particularly, using extensive Monte
Carlo simulations,

1. to develop and implement an efficient numerical algorithm for the
percolation threshold determination;

2. to discriminate between various definitions of the percolating cluster
and find out general consequences of each of them;

3. to test the hypothesis of universality of the chosen percolation thre-
shold parameters;

4. to locate the percolation line for different fluid models and different
definitions of cluster.



Introduction

Percolation theory [1, 2] is, in general, a widely used method to explain and
model quite a number of phenomena that are of scientific and industrial
importance. It is associated with the occurrence of the so called percolating
cluster and the list of applications is quite large not only in natural science
but also in social science. The concept of percolation is used to characterize
the effect of connectivity of microscopic elements (such as molecules, pores,
conducting elements, people, etc.) in disordered systems (such as fluid,
porous media, composite film, and society) on their macroscopic properties
(such as condensation, flow of oil, flow of electric current, and information
flow).

Dealing with fluids, then the most commonly accepted approach operates
with molecules as the basic microscopic elements. From the macroscopic
point of view, the fluid phase is homogeneous because its density is, in
average, uniform throughout the system. However, on the microscopic le-
vel its particles (molecules) may form localized morphological structures
called clusters. A cluster is, according to its local definition, a collection of
particles such that there is a pass (via bonds) between a pair of particles
and the entire problem is then reduced to the problem of an appropriate de-
finition of bonds. As for bonds themselves, there are two basic concepts [3]
to define an existence of a bond between a pair of particles, one based on
their proximity in the configurational space (configurational clusters), and
the other based on their proximity in the phase space (Hill [4] clusters).

The primary object of the percolation theory is the probability of occurrence
of a percolating cluster (called also an infinite cluster or wrapping, spanning
or crossing cluster), i.e., the cluster that spans the entire system. Dealing
with fluids, this probability, R, depends on density, p, and the size, L, of
the system at hand. The occurrence of a percolating cluster identifies a per-
colation transition. In the limit of an infinite fluid system, the percolating
cluster occurs above a sharply defined density and does not occur below
it. The goal is to find /determine this density, i.e. the percolation threshold
density from results for finite systems. With the exception of special ty-
pes of 2D and 3D lattice systems, it has not been determined theoretically
(analytically).

The determination of the percolation threshold from results obtained for
finite size systems is not unique and a number of various criteria have been
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proposed and used. Although some authors claim that scaling corrections
due to finite size effects are not essential [5], more accurate methods deter-
mining the percolation threshold density and other parameters are based
on a finite-size scaling analysis. Extending results obtained originally for
lattice systems to fluids it is assumed that, for large system size L, the
function R exhibits near the percolation threshold the universal behavior as
a function of the scaling variable (p—p.) LY" with v, called the correlation
length exponent, being a universal constant for the given dimensionality
regardless of the thermodynamic conditions and the nature of systems con-
sidered [1, 6].

To verify different methods determining the percolation threshold para-
meters and draw some general conclusions, the molecular simulations are
used as the only currently available tool. It is however necessary to bear in
mind that (i) simulations operate only with finite systems and (ii) studies
of the percolation transition on fluids are very time consuming in compa-
rison with lattice systems. Furthermore, a number of different definitions
of the percolating cluster and clusters themselves have been put forward
and practically no generally accepted results are therefore available.



Results and discussion

In general, there are two main concepts to define a percolating cluster in a
finite system for bulk fluids simulated in a (cubic) box with periodic boun-
dary conditions identified as wrapping (having an infinite extent within the
framework of the periodically repeating cells) and crossing (determined by
the spatial extension only) clusters. Thus as a first step, different crossing
and wrapping probabilities, R.. and R,, were examined as a function of
the fluid density p for the configurational clusters in the square-well (SW)
fluid with the attraction range parameter A\ = 1.25 at three supercritical
temperatures for a set of seven different system sizes characterized by the
number of particles N, see Fig. 1 and paper [P1] for further details. Looking
at R, (right), two striking features are immediately discernible: (i) regar-
dless of the system size, all the curves belonging to the same wrapping rule
intersect at one point which is supposed to be the percolation threshold
density p., and (ii) there is a unique p. independent of the wrapping rule.
In other words, it is observed that R,, becomes independent of the system
size at a certain density, p..
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Figure 1: Crossing and wrapping probabilities, R, (left) and R, (right), for the cluster
which crosses/wraps system (the square-well fluid with parameter A = 1.25 at supercritical
temperature 7' = 1.2) at least in one(®, two(® and three®® dimensions, respectively, as a
function of fluid density p. Different symbols correspond to different system sizes, number
of particles N. The thick solid line represents the probability R for each spanning rule in
the limit of an infinite system. The estimate of the percolation threshold fluid density is
pe = 0.2395.

Contrary to the wrapping probability, there is no such a common crossing
point for R (left) and thus it may be used for only a rough determination
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of p. or, to be specific, for a determination of the lower limit of p.. It is also
possible to estimate, intuitively, the percolation threshold via the inflection
point of R,,. The inflection points of R, approach the percolation threshold
with increasing L from the lower density side. The crossing probability Rgﬁ),
widely used in simulation studies, has the inflection point considerably
below p. even in the largest system studied.

Since three temperatures were considered, it was also possible to draw
some conclusions on universality of the percolation exponent v and the
percolation probability R, .. Although this was not the goal of the research
at this stage and we were aware of larger error bars, we concluded that the
universality was satisfied [P1]. Furthermore, there was an open question,
whether the results obtained for just one system, the SW fluid, might hold
true also for other systems. We therefore continued in the research along the
same line and considered a qualitatively different model, a primitive model
of water, see paper [P2]. The obtained results confirmed the validity of the
previously proposed method of determination of the percolation threshold
in fluids and its characteristics, and further supported the hypothesis of
universality, and efficiency and accuracy of the used method.

To summarize the results obtained till this point, it turns out that the
most convenient way for the determination of p. seems to be the probabi-
lity for the cluster which wraps the system in any dimension, Rg’] ), However,
we have also been aware of two facts: (i) validity of the hypothesis of the
universality was at the edge of accuracy of the results, and (ii) we used only
one type of clusters, the configurational clusters. There was also another
feature of the percolation line which should be brought in consideration:
where does it end with lowering temperatures? Theoretical arguments sug-
gest that it should terminate at the critical point but the simulation results
have not indicated any such tendency. The same applies also to various li-
terature data with one exception: When the Hill definition of the cluster is
used, then the percolation line seems to go towards the critical point [7].

A further step of the project has aimed therefore at addressing all these
issues. It means, (i) to consider both the configurational as well as Hill
clusters, (ii) to consider a wider range of temperatures, (ii) to consider
more fluid models and also a lattice model for comparison and verification
of the generated results, and (iii) to pay great care to errors of simulations
and their evaluation to be able to draw unambiguous conclusions.



The percolation of the configurational as well as Hill clusters in three di-
fferent model fluids over a range of supercritical temperatures have been
thus evaluated [P3]. In addition to the SW and primitive water fluids, the
realistic continuous Lennard-Jones (LJ) model has also been included. To
summarize, 35 differently defined systems were considered and three diffe-
rent system sizes have been used. Following the results obtained previously,
we considered only wrapping clusters and the same behavior as before, na-
mely, that all the curves for different system sizes intersect in one point
which corresponds to the percolation threshold for the given system, has

been observed. For a corresponding graph for one particular system see
Fig. 2 (left).
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Figure 2: The wrapping probability R as a function of fluid density (left) and as a
function of the scaling variable (right) for the EPM5-4 model of water and configurational
clusters at temperature 7' = 0.25 and different number of particles V.

Similarly, it has also been confirmed that Rgf) exhibits the universal be-
havior as a function of the scaling variable even for relative small system
sizes, see Fig. 2 (right). A nearly perfect collapse of all three curves into one
may be considered as a convincing proof that the used numerical method
(see paper [P3] for further details) for the determination of p., percolation

exponent v, and the critical wrapping probability Rg”’)c, is sufficiently accu-

rate. However, the results for v and Rgi)c (for LJ fluid listed in Table 1)
do not seem to support the idea that these parameters are universal for
a given dimensionality. The results show their rather a strong dependence
on (i) the interparticle interaction, (ii) the temperature, and also (iii) the
particular definition of cluster.
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Table 1: Results for the percolation exponent v and the wrapping probability at the

percolation threshold R&i)c for the Lennard-Jones fluid and two different definitions of
cluster. Numbers in parenthesis denote the standard error of the mean of the last digits.

configurational clusters Hill clusters
T v Rgf’)c v Rgf,)c

1.35 1.0943(23) 0.27327

( 1.1046(26)  0.35266
1.40 1.0759(15)  0.31902(

(

(

62) (66)
44)  0.9799(12)  0.40706(36)
1.60 1.01078(66) 0.39003(19) 0.90414(43) 0.44393(13)
2.00 0.96331(40) 0.42299(12) (15)
99 (34)

2.50 0.94563(33) 0.432922

0.87972(51) 0.45109

1
1
(99) 0.84206(98) 0.44799

To further support the obtained results and check correctness of the used
numerical method, we have applied our method also to a lattice system,
specifically to the site percolation on simple cubic lattice, for which the
data are known from literature. Using our method for the percolation thre-
shold occupation probability p. and the percolation exponent v we get, re-
spectively, p. = 0.3116004(35) and v = 0.87555(49), which is in agreement
with literature values p. = 0.3116080(4) [8], p. = 0.3116081(11) [9], and
pe = 0.3115(3) [10], and the value v = 0.877(12) [10]. From this comparison
we dare to conclude that the used methodology is sufficiently accurate and
efficient.

After having accurately determined the percolation threshold density p.
for three different model fluids over a range of supercritical temperatures
and two different definitions of cluster, its temperature dependence may
finally be discussed. The corresponding percolation line for the Lennard-
Jones fluid is shown in Fig. 3. It is generally assumed (claimed) that the line
of percolation originates from the critical point but without a convincing
support and with a number of contradicting results.

For all three models we get completely different lines for the configurati-
onal and Hill clusters, and in the case of the LJ and SW fluids none of
them seems to be going towards the critical point. This is clear without
any doubt for the percolation line given by the configurational clusters.
As for the line given by the Hill clusters, it gets very flat with lowering
temperature. With respect to generally large fluctuations, and hence large
errors, in vicinity of the critical point, a possibility that it eventually may
approach the critical point cannot be ruled out. In fact, Campi et al. [7]
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Figure 3: Percolation line for the Lennard-Jones fluid represented by full symbols (dashed
lines serve as a guide for eye), where circles and triangles correspond to configurational
and Hill clusters, respectively. The vapor-liquid coexistence line (thick solid line) including
critical point (open pentagon) is given by the Kolafa-Nezbeda equation of state [11].

also determined this line for the LJ fluid and our results coincide with the-
irs away from the critical point. On the basis of their results they claim
that the percolation line ends in the critical point within the simulation
errors in this region. Nonetheless, although with respect to the discussed
features of the percolation lines, the one corresponding to the Hill clusters
could/should be given preference and be considered “more physical”, it is
however hard to draw any definite conclusion from the available results.
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Conclusions

The thesis is based on two original papers already published in internati-
onal journals [P1,P2] and one submitted for publication [P3], and on pre-
sentations at international conferences. The main goal has been to develop
method for the percolation threshold determination and consequently: (i)
to examine validity of the concept of universality, and (ii) to locate the
percolation line with respect to different definitions of cluster. Extensive
Monte Carlo simulations have been used to obtain presented results.

As a first step we have examined the effect of various definitions of a
percolating cluster in a finite system on the percolation threshold determi-
nation. Comparing the crossing and wrapping probabilities, R.. and R,
respectively, we have found that the former ones are not convenient for
the localization of the percolation threshold in three-dimensional continu-
ous systems because of large finite size corrections to scaling. The wrapping
rule, especially the one identifying a percolating cluster as wrapping in any
dimension, Rq(,f ), (whose finite-size corrections at the percolation threshold
have been found to be negligible), is recommended to be used. The cros-

sing point of the wrapping probabilities Rgf)(p) for different (sufficiently)
large system sizes provides a very good first estimate of p.. To obtain its
more accurate estimate and consequently the percolation exponent v, the
numerical procedure that we have specified in [P3] and that is based on a
finite-size scaling analysis may be conveniently used.

Secondly we have tested the hypothesis of universality, i.e., that the corre-
lation length exponent v and the wrapping probability at the percolation

threshold Rgf)c are universal constants for the given dimensionality inde-
pendent of the particular process of percolation. However, all the obtained
results show their strong dependence on the temperature, the nature of
the system considered, and the employed definition of the cluster. Thus,
the percolation threshold in fluids (i.e., continuum correlated systems) can
not be characterized by universal exponents of random percolation and the
entire concept of universality does not seem to be supported.

Finally, different percolation lines have been obtained for different super-
critical model fluids. However, the question which of them, if any, has a
physical relevance and whether they originate from the critical point or not
remains open and should be addressed in the future research.
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Shrnuti

Predlozena dizertacni prace je zalozena na tfech puvodnich ¢lancich (dva z
nich jiz byly publikovany a tieti byl zaslan k opublikovani a je v recenznim
fizeni) a dvou konferen¢nich prispévcich. Jejim hlavnim cilem je vyvinout
spolehlivou metodu pro urceni perkolacniho prahu ve spojitych systémech,
na ¢ez navazuje: (i) ovéreni platnosti konceptu univerzality a (ii) nalezeni
perkola¢ni krivky s ohledem na rtuzna kritéria vymezujici klastr. Vsechny
prezentované zaveéry jsou zalozeny na vysledcich rozsédhlych (Monte Carlo)
pocitacovych simulaci.

V prvé tadé jsme vysetiovali vliv ruznych zpusobu identifikace perko-
lujiciho klastru v koneéném systému na urceni perkolacniho prahu. Srovna-
vali jsme dva zakladni zptusoby, potazmo dvé ruzné definované pravdépo-
dobnosti vyskytu perkolujiciho klastru R, a to konkrétné tzv. ,,crossing*,
R.., a ,wrapping“, R,, klastru. Prvni z nich se ukazala byt nevhodnou
pro urceni perkola¢niho prahu v dusledku jeji silné zavislosti na velikosti
systému. Naproti tomu druhéa z nich, a to konkrétné predevsim Rz(f ) (prav-
dépodobnost, ze v systému existuje klastr, ktery v ramci periodickych okra-
jovych podminek zahrnuje nejméné jeden periodicky obraz libovolné své
¢astice) je v perkolaénim prahu prakticky nezavisld na velikosti systému.
To znamend, ze perkolaéni prah p. (tj. hustotu p v perkola¢nim prahu)
lze odhadnout z pruseciku kiivek Rg,f)(p) ziskanych pro nejméné dva ruzneé
(dostatecné) velké systémy. Numerickou technikou, kterd je zaloZena na
v teorii popsanych skalovacich vlastnostech funkce R, lze ziskat presnéjsi
odhad p, spolu s odhadem perkola¢nicho exponentu v. V ¢lanku [P3] spe-
cifikujeme algoritmus, ktery povazujeme za doposud nejvhodné;jsi.

V dalsim kroku jsme testovali hypotézu univerzality — konkrétné tvr-
zeni, ze perkolacni exponent v a parametr Rgf)c (pravdépodobnost Rz(f)
v perkola¢nim prahu) jsou konstanty charakteristické pro danou dimenzi
systému bez ohledu na jiné vlastnosti systému nebo povaze procesu perko-
lace. Nase vysledky tuto hypotézu nepotvrzuji. Naopak ukazuji, ze sledo-
vané parametry jsou zavislé na teploté systému, charakteru systému (in-
terakéni potencidl) a také na vymezeni klastru. Tyto parametry, které jsou
dostatecné presné urceny pro miizkové systémy, tedy nemohou z principu
charakterizovat libovolné spojité systémy — tekutiny.

V konecném vysledku jsme ve studovanych nadkritickych tekutinach ziskali
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riuzné tzv. perkolacni kiivky pro dvé ruzna vymezeni klastru. Ote-vienou
otazkou vSak zustava, jaky je jejich fyzikalni vyznam (je-li néjaky) a specidlné
pak otazka, zda vychézeji z kritického bodu. Toto by mélo byt predmétem
dalstho vyzkumu.
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