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Goals of the thesis

The problems addressed in the thesis are a part of a long-term research
conducted in E. Hala Laboratory of Thermodynamics in the Institute of
Chemical Process Fundamentals of the Academy of Sciences of the Czech
Republic.
A general goal is to examine the effect of various definitions of a cluster

and a percolating cluster on the percolation threshold and then to examine
validity of the concept of universality. Particularly, using extensive Monte
Carlo simulations,

1. to develop and implement an efficient numerical algorithm for the
percolation threshold determination;

2. to discriminate between various definitions of the percolating cluster
and find out general consequences of each of them;

3. to test the hypothesis of universality of the chosen percolation thre-
shold parameters;

4. to locate the percolation line for different fluid models and different
definitions of cluster.
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Introduction

Percolation theory [1, 2] is, in general, a widely used method to explain and
model quite a number of phenomena that are of scientific and industrial
importance. It is associated with the occurrence of the so called percolating
cluster and the list of applications is quite large not only in natural science
but also in social science. The concept of percolation is used to characterize
the effect of connectivity of microscopic elements (such as molecules, pores,
conducting elements, people, etc.) in disordered systems (such as fluid,
porous media, composite film, and society) on their macroscopic properties
(such as condensation, flow of oil, flow of electric current, and information
flow).
Dealing with fluids, then the most commonly accepted approach operates

with molecules as the basic microscopic elements. From the macroscopic
point of view, the fluid phase is homogeneous because its density is, in
average, uniform throughout the system. However, on the microscopic le-
vel its particles (molecules) may form localized morphological structures
called clusters. A cluster is, according to its local definition, a collection of
particles such that there is a pass (via bonds) between a pair of particles
and the entire problem is then reduced to the problem of an appropriate de-
finition of bonds. As for bonds themselves, there are two basic concepts [3]
to define an existence of a bond between a pair of particles, one based on
their proximity in the configurational space (configurational clusters), and
the other based on their proximity in the phase space (Hill [4] clusters).
The primary object of the percolation theory is the probability of occurrence

of a percolating cluster (called also an infinite cluster or wrapping, spanning
or crossing cluster), i.e., the cluster that spans the entire system. Dealing
with fluids, this probability, R, depends on density, ρ, and the size, L, of
the system at hand. The occurrence of a percolating cluster identifies a per-
colation transition. In the limit of an infinite fluid system, the percolating
cluster occurs above a sharply defined density and does not occur below
it. The goal is to find/determine this density, i.e. the percolation threshold
density from results for finite systems. With the exception of special ty-
pes of 2D and 3D lattice systems, it has not been determined theoretically
(analytically).
The determination of the percolation threshold from results obtained for

finite size systems is not unique and a number of various criteria have been
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proposed and used. Although some authors claim that scaling corrections
due to finite size effects are not essential [5], more accurate methods deter-
mining the percolation threshold density and other parameters are based
on a finite-size scaling analysis. Extending results obtained originally for
lattice systems to fluids it is assumed that, for large system size L, the
function R exhibits near the percolation threshold the universal behavior as
a function of the scaling variable (ρ−ρc) L1/ν with ν, called the correlation
length exponent, being a universal constant for the given dimensionality
regardless of the thermodynamic conditions and the nature of systems con-
sidered [1, 6].
To verify different methods determining the percolation threshold para-

meters and draw some general conclusions, the molecular simulations are
used as the only currently available tool. It is however necessary to bear in
mind that (i) simulations operate only with finite systems and (ii) studies
of the percolation transition on fluids are very time consuming in compa-
rison with lattice systems. Furthermore, a number of different definitions
of the percolating cluster and clusters themselves have been put forward
and practically no generally accepted results are therefore available.
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Results and discussion

In general, there are two main concepts to define a percolating cluster in a
finite system for bulk fluids simulated in a (cubic) box with periodic boun-
dary conditions identified as wrapping (having an infinite extent within the
framework of the periodically repeating cells) and crossing (determined by
the spatial extension only) clusters. Thus as a first step, different crossing
and wrapping probabilities, Rcr and Rw, were examined as a function of
the fluid density ρ for the configurational clusters in the square-well (SW)
fluid with the attraction range parameter λ = 1.25 at three supercritical
temperatures for a set of seven different system sizes characterized by the
number of particles N , see Fig. 1 and paper [P1] for further details. Looking
at Rw (right), two striking features are immediately discernible: (i) regar-
dless of the system size, all the curves belonging to the same wrapping rule
intersect at one point which is supposed to be the percolation threshold
density ρc, and (ii) there is a unique ρc independent of the wrapping rule.
In other words, it is observed that Rw becomes independent of the system
size at a certain density, ρc.
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Figure 1: Crossing and wrapping probabilities, Rcr (left) and Rw (right), for the cluster
which crosses/wraps system (the square-well fluid with parameter λ = 1.25 at supercritical
temperature T = 1.2) at least in one(e), two(2) and three(3) dimensions, respectively, as a
function of fluid density ρ. Different symbols correspond to different system sizes, number
of particles N . The thick solid line represents the probability R for each spanning rule in
the limit of an infinite system. The estimate of the percolation threshold fluid density is
ρc = 0.2395.

Contrary to the wrapping probability, there is no such a common crossing
point for Rcr (left) and thus it may be used for only a rough determination
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of ρc or, to be specific, for a determination of the lower limit of ρc. It is also
possible to estimate, intuitively, the percolation threshold via the inflection
point of Rw. The inflection points of Rcr approach the percolation threshold

with increasing L from the lower density side. The crossing probability R
(e)
cr ,

widely used in simulation studies, has the inflection point considerably
below ρc even in the largest system studied.
Since three temperatures were considered, it was also possible to draw

some conclusions on universality of the percolation exponent ν and the
percolation probability Rw,c. Although this was not the goal of the research
at this stage and we were aware of larger error bars, we concluded that the
universality was satisfied [P1]. Furthermore, there was an open question,
whether the results obtained for just one system, the SW fluid, might hold
true also for other systems. We therefore continued in the research along the
same line and considered a qualitatively different model, a primitive model
of water, see paper [P2]. The obtained results confirmed the validity of the
previously proposed method of determination of the percolation threshold
in fluids and its characteristics, and further supported the hypothesis of
universality, and efficiency and accuracy of the used method.
To summarize the results obtained till this point, it turns out that the

most convenient way for the determination of ρc seems to be the probabi-

lity for the cluster which wraps the system in any dimension, R
(e)
w . However,

we have also been aware of two facts: (i) validity of the hypothesis of the
universality was at the edge of accuracy of the results, and (ii) we used only
one type of clusters, the configurational clusters. There was also another
feature of the percolation line which should be brought in consideration:
where does it end with lowering temperatures? Theoretical arguments sug-
gest that it should terminate at the critical point but the simulation results
have not indicated any such tendency. The same applies also to various li-
terature data with one exception: When the Hill definition of the cluster is
used, then the percolation line seems to go towards the critical point [7].
A further step of the project has aimed therefore at addressing all these

issues. It means, (i) to consider both the configurational as well as Hill
clusters, (ii) to consider a wider range of temperatures, (ii) to consider
more fluid models and also a lattice model for comparison and verification
of the generated results, and (iii) to pay great care to errors of simulations
and their evaluation to be able to draw unambiguous conclusions.
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The percolation of the configurational as well as Hill clusters in three di-
fferent model fluids over a range of supercritical temperatures have been
thus evaluated [P3]. In addition to the SW and primitive water fluids, the
realistic continuous Lennard-Jones (LJ) model has also been included. To
summarize, 35 differently defined systems were considered and three diffe-
rent system sizes have been used. Following the results obtained previously,
we considered only wrapping clusters and the same behavior as before, na-
mely, that all the curves for different system sizes intersect in one point
which corresponds to the percolation threshold for the given system, has
been observed. For a corresponding graph for one particular system see
Fig. 2 (left).
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Figure 2: The wrapping probability R
(e)
w as a function of fluid density (left) and as a

function of the scaling variable (right) for the EPM5-4 model of water and configurational
clusters at temperature T = 0.25 and different number of particles N .

Similarly, it has also been confirmed that R
(e)
w exhibits the universal be-

havior as a function of the scaling variable even for relative small system
sizes, see Fig. 2 (right). A nearly perfect collapse of all three curves into one
may be considered as a convincing proof that the used numerical method
(see paper [P3] for further details) for the determination of ρc, percolation

exponent ν, and the critical wrapping probability R
(e)
w,c, is sufficiently accu-

rate. However, the results for ν and R
(e)
w,c (for LJ fluid listed in Table 1)

do not seem to support the idea that these parameters are universal for
a given dimensionality. The results show their rather a strong dependence
on (i) the interparticle interaction, (ii) the temperature, and also (iii) the
particular definition of cluster.
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Table 1: Results for the percolation exponent ν and the wrapping probability at the

percolation threshold R
(e)
w,c for the Lennard-Jones fluid and two different definitions of

cluster. Numbers in parenthesis denote the standard error of the mean of the last digits.

configurational clusters Hill clusters

T ν R
(e)
w,c ν R

(e)
w,c

1.35 1.0943(23) 0.27327(62) 1.1046(26) 0.35266(66)
1.40 1.0759(15) 0.31902(44) 0.9799(12) 0.40706(36)
1.60 1.01078(66) 0.39003(19) 0.90414(43) 0.44393(13)
2.00 0.96331(40) 0.42299(12) 0.87972(51) 0.45109(15)
2.50 0.94563(33) 0.432922(99) 0.84206(98) 0.44799(34)

To further support the obtained results and check correctness of the used
numerical method, we have applied our method also to a lattice system,
specifically to the site percolation on simple cubic lattice, for which the
data are known from literature. Using our method for the percolation thre-
shold occupation probability pc and the percolation exponent ν we get, re-
spectively, pc = 0.3116004(35) and ν = 0.87555(49), which is in agreement
with literature values pc = 0.3116080(4) [8], pc = 0.3116081(11) [9], and
pc = 0.3115(3) [10], and the value ν = 0.877(12) [10]. From this comparison
we dare to conclude that the used methodology is sufficiently accurate and
efficient.
After having accurately determined the percolation threshold density ρc

for three different model fluids over a range of supercritical temperatures
and two different definitions of cluster, its temperature dependence may
finally be discussed. The corresponding percolation line for the Lennard-
Jones fluid is shown in Fig. 3. It is generally assumed (claimed) that the line
of percolation originates from the critical point but without a convincing
support and with a number of contradicting results.
For all three models we get completely different lines for the configurati-

onal and Hill clusters, and in the case of the LJ and SW fluids none of
them seems to be going towards the critical point. This is clear without
any doubt for the percolation line given by the configurational clusters.
As for the line given by the Hill clusters, it gets very flat with lowering
temperature. With respect to generally large fluctuations, and hence large
errors, in vicinity of the critical point, a possibility that it eventually may
approach the critical point cannot be ruled out. In fact, Campi et al. [7]
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Figure 3: Percolation line for the Lennard-Jones fluid represented by full symbols (dashed
lines serve as a guide for eye), where circles and triangles correspond to configurational
and Hill clusters, respectively. The vapor-liquid coexistence line (thick solid line) including
critical point (open pentagon) is given by the Kolafa-Nezbeda equation of state [11].

also determined this line for the LJ fluid and our results coincide with the-
irs away from the critical point. On the basis of their results they claim
that the percolation line ends in the critical point within the simulation
errors in this region. Nonetheless, although with respect to the discussed
features of the percolation lines, the one corresponding to the Hill clusters
could/should be given preference and be considered “more physical”, it is
however hard to draw any definite conclusion from the available results.
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Conclusions

The thesis is based on two original papers already published in internati-
onal journals [P1,P2] and one submitted for publication [P3], and on pre-
sentations at international conferences. The main goal has been to develop
method for the percolation threshold determination and consequently: (i)
to examine validity of the concept of universality, and (ii) to locate the
percolation line with respect to different definitions of cluster. Extensive
Monte Carlo simulations have been used to obtain presented results.
As a first step we have examined the effect of various definitions of a

percolating cluster in a finite system on the percolation threshold determi-
nation. Comparing the crossing and wrapping probabilities, Rcr and Rw,
respectively, we have found that the former ones are not convenient for
the localization of the percolation threshold in three-dimensional continu-
ous systems because of large finite size corrections to scaling. The wrapping
rule, especially the one identifying a percolating cluster as wrapping in any

dimension, R
(e)
w , (whose finite-size corrections at the percolation threshold

have been found to be negligible), is recommended to be used. The cros-

sing point of the wrapping probabilities R
(e)
w (ρ) for different (sufficiently)

large system sizes provides a very good first estimate of ρc. To obtain its
more accurate estimate and consequently the percolation exponent ν, the
numerical procedure that we have specified in [P3] and that is based on a
finite-size scaling analysis may be conveniently used.
Secondly we have tested the hypothesis of universality, i.e., that the corre-

lation length exponent ν and the wrapping probability at the percolation

threshold R
(e)
w,c are universal constants for the given dimensionality inde-

pendent of the particular process of percolation. However, all the obtained
results show their strong dependence on the temperature, the nature of
the system considered, and the employed definition of the cluster. Thus,
the percolation threshold in fluids (i.e., continuum correlated systems) can
not be characterized by universal exponents of random percolation and the
entire concept of universality does not seem to be supported.
Finally, different percolation lines have been obtained for different super-

critical model fluids. However, the question which of them, if any, has a
physical relevance and whether they originate from the critical point or not
remains open and should be addressed in the future research.

13



Shrnut́ı

Předložená dizertačńı práce je založena na třech p̊uvodńıch článćıch (dva z
nich již byly publikovány a třet́ı byl zaslán k opublikováńı a je v recenzńım
ř́ızeńı) a dvou konferenčńıch př́ıspěvćıch. Jej́ım hlavńım ćılem je vyvinout
spolehlivou metodu pro určeńı perkolačńıho prahu ve spojitých systémech,
na čež navazuje: (i) ověřeńı platnosti konceptu univerzality a (ii) nalezeńı
perkolačńı křivky s ohledem na r̊uzná kritéria vymezuj́ıćı klastr. Všechny
prezentované závěry jsou založeny na výsledćıch rozsáhlých (Monte Carlo)
poč́ıtačových simulaćı.
V prvé řadě jsme vyšetřovali vliv r̊uzných zp̊usob̊u identifikace perko-

luj́ıćıho klastru v konečném systému na určeńı perkolačńıho prahu. Srovná-
vali jsme dva základńı zp̊usoby, potažmo dvě r̊uzně definované pravděpo-
dobnosti výskytu perkoluj́ıćıho klastru R, a to konkrétně tzv.

”
crossing“,

Rcr, a
”
wrapping“, Rw, klastru. Prvńı z ńıch se ukázala být nevhodnou

pro určeńı perkolačńıho prahu v d̊usledku jej́ı silné závislosti na velikosti

systému. Naproti tomu druhá z nich, a to konkrétně předevš́ım R
(e)
w (prav-

děpodobnost, že v systému existuje klastr, který v rámci periodických okra-
jových podmı́nek zahrnuje nejméně jeden periodický obraz libovolné své
částice) je v perkolačńım prahu prakticky nezávislá na velikosti systému.
To znamená, že perkolačńı práh ρc (tj. hustotu ρ v perkolačńım prahu)

lze odhadnout z pr̊useč́ıku křivek R
(e)
w (ρ) źıskaných pro nejméně dva r̊uzně

(dostatečně) velké systémy. Numerickou technikou, která je založena na
v teorii popsaných škálovaćıch vlastnostech funkce R, lze źıskat přesněǰśı
odhad ρc spolu s odhadem perkolačńıcho exponentu ν. V článku [P3] spe-
cifikujeme algoritmus, který považujeme za doposud nejvhodněǰśı.
V daľśım kroku jsme testovali hypotézu univerzality – konkrétně tvr-

zeńı, že perkolačńı exponent ν a parametr R
(e)
w,c (pravděpodobnost R

(e)
w

v perkolačńım prahu) jsou konstanty charakteristické pro danou dimenzi
systému bez ohledu na jiné vlastnosti systému nebo povaze procesu perko-
lace. Naše výsledky tuto hypotézu nepotvrzuj́ı. Naopak ukazuj́ı, že sledo-
vané parametry jsou závislé na teplotě systému, charakteru systému (in-
terakčńı potenciál) a také na vymezeńı klastru. Tyto parametry, které jsou
dostatečně přesně určeny pro mř́ıžkové systémy, tedy nemohou z principu
charakterizovat libovolné spojité systémy – tekutiny.
V konečném výsledku jsme ve studovaných nadkritických tekutinách źıskali
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r̊uzné tzv. perkolačńı křivky pro dvě r̊uzná vymezeńı klastru. Ote-vřenou
otázkou však z̊ustává, jaký je jejich fyzikálńı význam (je-li nějaký) a speciálně
pak otázka, zda vycházej́ı z kritického bodu. Toto by mělo být předmětem
daľśıho výzkumu.
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